Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2) for tissue ablation

نویسندگان

  • Nina Klein
  • Enric Guenther
  • Paul Mikus
  • Michael K. Stehling
  • Boris Rubinsky
چکیده

BACKGROUND Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2). METHOD A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW) was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. RESULTS Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. DISCUSSION The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation

Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of th...

متن کامل

A Multi Objective Genetic Algorithm (MOGA) for Optimizing Thermal and Electrical Distribution in Tumor Ablation by Irreversible Electroporation

Background: Irreversible electroporation (IRE) is a novel tumor ablation technique. IRE is associated with high electrical fields and is often reported in conjunction with thermal damage caused by Joule heating. For good response to surgery it is crucial to produce minimum thermal damage in both tumoral and healthy tissues named Non-Thermal Irreversible Electroporation(NTIRE). Non-thermal irrev...

متن کامل

Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses

Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with a...

متن کامل

Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line

Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017